Расширение тел от теплоты
Коэффициент линейного расширения α есть увеличение длины тела при увеличении температуры на 1° С и при первоначальной длине, равной 1. Коэффициент объемного расширения = 3α для твердых однородных тел. Для всех газов при постоянном давлении расширение на 1° повышения температуры составляет почти одинаково 1/273 = 0,00366 первоначального объема
Коэффициент линейного расширения на 1°С
Алюминий | 23,8.10-6 | Бронза | 17,5.10-6 | Висмут | 13,4.10-6 |
Гипс | 25.10-6 | Железо | 11,5.10-6 | Золото | 14,4.10-6 |
Инвар (36% никкеля, 63,5% железа) | 1,6.10-6 | Иридий | 6,5.10-6 | Кварц плавленый | 0,5.10-6 |
Кобальт | 12,7.10-6 | Константин | 15,2.10-6 | Магналий | 24.10-6 |
Латунь | 18,5.10-6 | Медь | 16,5.10-6 | Магний | 26.10-6 |
Нейзильбер | 18.10-6 | Никкель | 13,1.10-6 | Олово | 23,0.10-6 |
Платина | 9,0.10-6 | Платино-иридий | 8,8.10-6 | Свинец | 29,2.10-6 |
Сера | 9.10-6 | Серебро | 19,7.10-6 | Стекло | 8.10-6 |
Тантал | 6,5.10-6 | Фарфор | 3,0.10-6 | Цинк | 30.10-6 |
Железо и сталь имеют почти одинаковое расширение.
Коэффициент расширения в среднем равен между 0° и 100° 11,5 • 10-6 • t, при более высоких температурах 11,5 • 10-6 + 0,08 • 10-6 • t (t повышение температуры в градусах).
Литая сталь в закаленном состоянии обладает большим коэффициентом расширения до 0,000014, который, однако, при отпуске приходит к нормальной величине. У чугуна коэффициент расширения падает до 9 • 10-6
Расход теплоносителя в системе отопления: расчетная формула
Объём носителя, использующегося в схемах обогрева дома, выражается в килограммах, потраченных за одну секунду. Значение применяется для расчета количества выделяемого тепла, обеспечивающего комфортную температуру в жилых помещениях. Обычно в отопительных системах частных домом применяются современные приборы – батареи.
Для определения расчетных показателей требуются данные оборудования, в частности параметры отопительного котла, рассчитанные на нагревание 1 литра технической жидкости.
Пример таблицы отопительного котла для частного домаИсточник kupisantehniky.ru
Выражение, используемое для вычисления расхода носителя тепла для системы обогрева жилых помещений:
G = N / Q, где:
- N — характеристика мощности оборудования, указывается в Ватт.
- Q — количество тепла, выражается в Дж/кг.
Поученное при расчете значение умножается на коэффициент (3,6 х 1000) для перевода в кг/час.
Изменение состояния тел с температурой
Точки плавления и отвердевания различных тел при нормальном атмосферном давлении
Азот | -209,9 | Алкоголь | -114 |
Алюминий | 657 | Аммиак | -78,2 |
Анилин | -6,2 | Боксит | 1820 |
Бензол | 5,50 | Бор | 2400 |
Бронза | 900 | Бура | 878 |
Ванадий | 1800 | Висмут | 267,5 |
Вода | Вода морская | -2,5 | |
Вольфрам | 3400 | Воск | 64 |
Вуда сплав | 60-70 | Глинозем чистый | 2010 |
Глицерин | -20 | Дельта-металл | 950 |
Доменные шлаки | 1300-1430 | Железо | 1530 |
Чугун серый | 1200 | Чугун белый | 1130 |
Золото | 1063 | Инвар (никкелевая сталь) | 1425 |
Иридий | 2340 | Кадмий | 320,9 |
Калий | 62,5 | Кальций | 113,5-119,5 |
Каучук | 125 | Кислород | -218 |
Кобальт | 1480 | Кремний | 1420 |
Латунь | 900 | Магналий | 600-700 |
Магний | 651 | Марганец | 1210 |
Масло льняное | -20 | Масло репное | -3,5 |
Медь | 1083 | Молибден | 2500 |
Натрий | 97,5 | Нафталин | 80,0 |
Никкель | 1450 | Олово | 231,8 |
Осмий | 2700 | Палладий | 1557 |
Парафин | 64 | Платина | 1764 |
Поваренная соль | 800 | Повар, соль, конц. раств | 18 |
Припой мягкий | 135-210 | Припой с висмутом | 94-125 |
Ртуть | -38,89 | Свинец | 320,9 |
Сера | 112,8 | Сернистый ангидрид | -72 |
Сероуглерод | -112 | Серебро | 960,5 |
Скипидар | -10 | Спермацет | 49 |
Сталь | 1300-1400 | Стеарин | 68 |
Сурьма | 630 | Тантал | 2850 |
Титан | 1800 | Толуол | -94,5 |
Углекислота | -78,5 | Фарфор | 1550 |
Фосфор | 44 | Хлористый кальций | 720 |
Хлороформ | -63,7 | Хром | 1520 |
Феррохром | 2180 | Цинк | 419,4 |
Точки плавления конусов 3егера
№ | ° С | № | ° С | № | ° С | № | ° С |
022 | 600 | 07а | 960 | 9 | 1280 | 29 | 1650 |
021 | 650 | 06а | 980 | 10 | 1300 | 30 | 1670 |
020 | 670 | 05а | 1000 | 11 | 1320 | 31 | 1690 |
019 | 690 | 04а | 1020 | 12 | 1350 | 32 | 1710 |
018 | 710 | 03а | 1040 | 13 | 1380 | 33 | 1730 |
017 | 730 | 02а | 1060 | 14 | 1410 | 34 | 1750 |
016 | 750 | 01а | 1080 | 15 | 1435 | 35 | 1770 |
015а | 790 | 1а | 1100 | 16 | 1460 | 36 | 1790 |
013а | 815 | 2а | 1120 | 17 | 1480 | 37 | 1825 |
012а | 835 | 3а | 1140 | 18 | 1500 | 38 | 1850 |
011а | 855 | 4а | 1150 | 19 | 1520 | 39 | 1880 |
010а | 880 | 5а | 1180 | 20 | 1530 | 40 | 1920 |
00а | 900 | 6а | 1200 | 26 | 1580 | 41 | 1960 |
09а | 920 | 7 | 1230 | 27 | 1610 | 42 | 2000 |
08а | 940 | 8 | 1250 | 28 | 1630 |
Керамические материалы и изделия, точка плавления которых соответствует № 26 и выше, называются огнеупорными
Точка кипения разных веществ при атмосферном давлении
Азот | -196,8 | Алкоголь | -78,3 |
Алюминий | 1800 | Аммиак | -33,4 |
Анилин | 184,2 | Ацетилен | -83,6 |
Ацетон | 66,7 | Бензол | 80,2 |
Бензофенон | 305,9 | Висмут | 1420 |
Вода | 100 | Водород | -252,8 |
Воздух | -193 | Гелий | -268,8 |
Глицерин | 290 | Железо | 2450 |
Кадмий | 767 | Кислород | -183,0 |
Льняное масло | 316 | Магний | 1120 |
Марганец | 1900 | Медь | 2300 |
Метиловый алкоголь | 64,7 | Нафталин | 218,0 |
Нитробензол | 210 | Окись углерода | -190 |
Олово | 2270 | Парафин | 300 |
Поваренная соль, нас. раствор | 108 | Ртуть | 356,7 |
Свинец | 1525 | Сера | 444,5 |
Сернистый ангидрид | -10,0 | Сероуглерод | 46,2 |
Скипидар | 161 | Толуол | 110,8 |
Углекислота | -78,5 | Уксусная кислота | 118,5 |
Фосфор | 287 | Хлор | 35,8 |
Хлористый кальц., нас. раст | 180 | Хлороформ | 62 |
Цинк | 906 | Эфир | 34,5 |
Электроэнергия
Вспомним, что мощность, измеряемая в ваттах (Вт) определяется как количество работы (количество расходуемой на работу энергии) в единицу времени («работа» в данном предложении — физический термин, измеряется в тех же единицах, что и энергия, то есть в джоулях). Один ватт равен одному джоулю в секунду (1 Вт = 1 Дж/с). Если мощности 1 Вт соответствует расход энергии, равный 1 Дж в секунду, то за 1 час расход энергии при такой же мощности составит 3600 Дж.
Отсюда следует: 1 Вт = 3600 Дж/ч. Следовательно, 1 Вт⋅час = 3600 Дж. Указанный объем энергии очень мал, поэтому объем потребленной электроэнергии принято измерять в киловатт-часах (1 кВт⋅ч = 3 600 000 Дж).
Как следует из приведенных рассуждений, электроэнергию можно (как и любую другую энергию) измерить в джоулях, но с целью упрощения расчетов для измерения объема потребленной электроэнергии применяется внесистемная единица киловатт-час. Под упрощением расчетов понимается уменьшение порядка чисел (объем электроэнергии, измеренный в кВт⋅ч, в 3,6 млн раз меньше, чем тот же объем, измеренный в Дж) и более простая логика определения объема потребления (например, легко посчитать, что лампочка мощностью 100 Вт, горящая в течение одного часа, потребит 0,1 киловатт-часа электроэнергии, расчет в джоулях будет более сложен).
Физический смысл норматива потребления отопления
Многоквартирные дома в законодательстве РФ, в том числе в целях расчета объема потребления теплоэнергии для отопления, рассматриваются как неделимые единицы. То есть МКД — это единый теплотехнический объект, потребляющий теплоэнергию для отопления входящих в его состав помещений. И именно общий объем потребленной всем домом теплоэнергии важен при расчетах исполнителя коммунальных услуг (ИКУ) с ресурсоснабжающей организацией (РСО).
Правила установления и определения нормативов потребления коммунальных услуг, утвержденные ПП РФ от 23.05.2006 N306 (далее — Правила 306) с целью расчета норматива потребления коммунальной услуги по отоплению предусматривают сначала расчет количества тепловой энергии, необходимой для отопления многоквартирного дома или жилого дома в течение года (пункт 19 Приложения 1 к Правилам 306, формула 19). Год выбран в качестве периода, за который производится расчет, для дальнейшего получения усредненного значения норматива потребления теплоэнергии в месяц, поскольку в разные календарные месяцы потребление теплоэнергии на отопление будет, разумеется, разным, а оплата по нормативу предполагает одинаковый размер платы за отопление либо в течение отопительного периода, либо равномерно в течение календарного года, в зависимости от выбранного субъектом РФ способа оплаты отопления .
Поскольку многоквартирный дом состоит из совокупности жилых и нежилых помещений и мест общего пользования (общего имущества), при этом общее имущество на праве общедолевой собственности принадлежит собственникам отдельных помещений дома, весь объем тепловой энергии, поступающей в дом, потребляется именно собственниками помещений такого дома. Следовательно, и оплата теплоэнергии, потребленной на отопление, должна производиться собственниками помещений МКД. И тут возникает вопрос — каким образом распределить стоимость всего объема теплоэнергии, потребленной многоквартирным домом, между собственниками помещений этого МКД?
Руководствуясь вполне логичными выводами о том, что потребление теплоэнергии в каждом конкретном помещении зависит от размера такого помещения, Правительство РФ установило порядок распределения объема теплоэнергии, потребляемой всем домом, среди помещений такого дома пропорционально площади этих помещений. Такой порядок предусматривают как Правила 354 (распределение показаний общедомового прибора учета отопления пропорционально долям площадей помещений конкретных собственников в общей площади всех помещений дома в собственности), так и Правила 306 при установлении норматива потребления отопления.
Пункт 18 Приложения 1 к Правилам 306 устанавливает: «18. Норматив потребления коммунальной услуги по отоплению в жилых и нежилых помещениях (Гкал на 1 кв.м общей площади всех жилых и нежилых помещений в многоквартирном доме или жилого дома в месяц) определяется по следующей формуле (формула 18):
,
где: — количество тепловой энергии, потребляемой за один отопительный период многоквартирными домами, не оборудованными коллективными (общедомовыми) приборами учета тепловой энергии, или жилыми домами, не оборудованными индивидуальными приборами учета тепловой энергии (Гкал), определяемое по формуле 19; — общая площадь всех жилых и нежилых помещений в многоквартирных домах или общая площадь жилых домов (кв.м); — период, равный продолжительности отопительного периода (количество календарных месяцев, в том числе неполных, в отопительном периоде)».
Выбор циркуляционного насоса
Сегодня ни одна отопительная система не монтируется без циркуляционного насоса. Две характеристики, по которым подбирается устройство:
- Q — параметр расхода теплоносителя за один час, считающийся в м3.
- Н — показатель давления, выраженный в метрах.
Теплоноситель, который нагревается до необходимой для отопления помещений температуры, циркулируя по системе, часть тепла отдает в стены, выходящие на улицу. Данный показатель – это теплопотери отопительной системы дома. Насос помогает в данной ситуации, за счет того, что в нужном режиме перемещает теплоноситель по трубам и батареям.
Циркуляционный насос VIEIR ЦН25-4 180 ммИсточник zonacomf.ru
На расход носителя тепла, кроме насоса, влияют 2 фактора:
- Степень нагрева жидкости.
- Пропускная способность контура отопительной системы.
Следовательно, для расчета расхода теплоносителя нужно знать потери тепла домовладения. Стадии расчёта:
- определение тепловых потерь по всему дому;
- установление средней температуры жидкости;
- выполнение расчёта потребления теплоносителя по нагрузке с учётом теплопотерь системы.
Поскольку температура снаружи и в помещении в течение отопительного сезона все время меняется, показатели берутся усредненные. Учитывается и то, что в каждом регионе климатические условия отличаются.
Центральная система отопленияИсточник eco-kotly.ru
Video 9 ТМ 4.1 Расход теплоносителя в системах отопления.
Что такое отопление?
Сначала давайте разберемся, что такое «коммунальная услуга по отоплению».
Критерием качества коммунальной услуги «отопление» Правила 354 устанавливают температуру помещения воздуха. С учетом того, что обязательные условия для начала отопительного периода, установленные теми же Правилами 354, предусматривают снижение среднесуточной температуры наружного воздуха ниже 8 градусов цельсия в течение 5‐дневного периода (пункт 5 Правил 354), очевидно, что коммунальная услуга по отоплению потребляется с целью нагрева воздуха внутри помещения потребителя. Разберемся, как же технически обогревается воздух в помещении.
Наиболее распространены в России системы водяного отопления. Теплоноситель (в качестве которого обычно используется вода), нагретый до определенной температуры, циркулирует в системе отопления, отдавая в атмосферу содержащееся в нем тепло (при этом температура теплоносителя, соответственно, снижается). Теплоотдача от теплоносителя в атмосферу происходит в основном на радиаторах отопления, при этом технически теплоотдача производится тремя способами:⁃ теплопроводность;⁃ конвекция;⁃ излучение.
Теплопроводностью называется передача тепловой энергии молекул контактирующих тел (либо молекул внутри одного тела). Например, теплопередача от радиатора отопления к некому предмету, непосредственно соприкасающемуся с этим радиатором, осуществляется именно за счет теплопроводности. Примером теплопроводности является также передача (потеря) тепла через стены из более нагретого помещения в менее нагретое (или в окружающую дом атмосферу).
Конвекция — передача тепла жидкостью или газом (в том числе воздухом). Конвективный теплообмен происходит при обтекании газом некого объекта, имеющего температуру, отличную от температуры газа. Например, при обтекании воздухом более горячего радиатора отопления воздух нагревается, при обтекании нагретым воздухом стен помещения, предметов интерьера и других объектов, имеющих более низкую температуру, воздух остывает, нагревая обтекаемые предметы. Необходимо отметить, что, например, обогрев мест общего пользования, не оборудованных радиаторами отопления (например, лестничных площадок) осуществляется, в основном, за счет конвекции. Именно нагретый воздух из оборудованных радиаторами отопления помещений, проникающий через неплотности в дверях, стенах, через вентиляционные каналы, через дверные проемы во время открывания дверей, способствует поддержанию в подъезде более высокой температуры, чем на улице.
Излучение — передача теплоэнергии через оптически проницаемую среду (через вакуум, воздух, прозрачные материалы) от более нагретого объекта к менее нагретому посредством электромагнитных волн. Например, именно излучением передается на Землю тепло от Солнца. Разумеется, радиатор отопления не излучает такое количество тепла, как Солнце, и увидеть излучение радиатора невооруженным взглядом невозможно, но через специальные приборы (тепловизоры) такое излучение прекрасно видно.
Необходимо особо отметить, что сам теплоноситель в процессе отопления не расходуется (по крайней мере, в штатном режиме работы, когда нет утечек). Отопление осуществляется путем перехода тепла в атмесферу отапливаемых помещений, при этом количество (вес) теплоносителя не меняется – нагретая (в котле или ином устройстве) вода поступает в систему отопления, циркулирует в системе, отдавая тепло и при этом остывая, после чего по обратному трубопроводу возвращается в устройство нагрева. А поскольку сам теплоноситель не расходуется, то и оплата его потребления не производится, потребители оплачивают только тепло, отданное теплоносителем (водой) в атмосферу отапливаемых помещений, принадлежащих потребителям.
Почему я плачу за отопление летом?
Почему я плачу за отопление летом?
Плата за отопление может начисляться либо только в отопительный сезон (как в примерах выше), либо круглый год.
За год получаются одинаковые суммы, но первый способ проще и, главное, он прозрачен для получателя квитанции. Второй способ довольно замысловат и часто вызывает недоумение у жильцов. В этом случае все расходы на отопление за год складывают и делят на двенадцать.
У Петровых такая же квартира, как у Ивановых, но местная администрация выбрала второй способ, расчет в течение календарного года. Счетчиков нет.
Пусть отопительный сезон длился 7 месяцев. Разделим 7 на 12, получим примерно 0,58. Умножим на число, полученное в первом примере: 0,58×1170 = 678,6 руб. Это сумма, которую придется платить за отопление весь год ежемесячно.
Нетрудно подсчитать, что за год в сумме получится столько же, сколько у Ивановых (из первого примера) за семь месяцев отопительного сезона.
Если есть домовой или квартирный счетчик, а плата начисляется вторым способом, все не так просто. В расчет идут не свежие показания счетчика, а среднее ежемесячное потребление тепла за прошлый год (суммарное тепло за весь отопительный сезон поделить на двенадцать). Или, если счетчик только что установлен, — те самые «нормативы по отоплению».
Результат, естественно, никогда не совпадает с реальностью, и в начале следующего года приходится его корректировать. Поэтому в квитанциях появляются вычеты или доплаты — чтоб получилась сумма, которая набежала на счетчике.
В Новосибирске постановлением губернатора области принят именно этот способ.
Однако он настолько неудобен (особенно для жильцов), что многие управляющие компании неофициально разрешают платить «по факту потребления». То есть первым, простым и понятным способом.
Методика расчета
Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:
- Сбор исходных данные об объекте.
- Проведение энергетического обследования здания.
- На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
- Составление технического отчета.
- Согласование отчета в организации, предоставляющей теплоэнергию.
- Заключение нового договора или изменение условий старого.
Сбор исходный данных об объекте тепловой нагрузки
Какие данные необходимо собрать или получить:
- Договор (его копия) на теплоснабжение со всеми приложениями.
- Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
План БТИ (копия).
Данные по системе отопления: однотрубная или двухтрубная.
Верхний или нижний розлив теплоносителя.
Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:
- площадь отапливаемых помещений;
- тип системы отопления;
- наличия горячего водоснабжения и вентиляции.
Энергетическое обследование здания
Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.
В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.
Технический отчет
Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:
- Исходные данные об объекте.
- Схема расположения радиаторов отопления.
- Точки вывода ГВС.
- Сам расчет.
- Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
- Приложения.
- Свидетельство членства в СРО энергоаудитора.
- Поэтажный план здания.
- Экспликация.
- Все приложения к договору по энергоснабжению.
После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.
Учетные приборы для домов и квартир
Специальный прибор позволяет точно подсчитывать тарифы за водоснабжение, электричество, газ и тепло. Пользователям разрешается устанавливать теплосчетчик для фиксации расходов тепловой энергии. Устройство производит измерение в Гкал/ч, кВт/ч и кДж/ч. На сегодняшний день популярны.
Крыльчатые счетчики
Крыльчатый счетчик эффективно работает при температуре ниже 22 градусов Счетчик имеет вид механизма с перпендикулярным расположением оси вращения. Модель характеризуется низкой чувствительностью, что позволяет точно измерять тепловые затраты. Регуляторы подходят для помещений с хорошей теплоизоляцией, температурными показателями в +26 градусов. Крыльчатый аппарат при функциях корректировки температуры до +22 градусов считает минимум Гкал.
Преимущества:
- недорогая стоимость;
- запитка от батареек;
- простота использования;
- точность замеров.
Минусы:
- риск поломок вследствие гидроудара;
- быстрый износ механизма;
- повышение давления в системе;
- при заклинивании крыльчатки водопоток не пропускается.
Приборы с регистраторами скачков
Электронные приборы стоят дороже, но точнее считают гигакалории Импульсный аппарат производит удаленное снятие показаний с 2-16 каналов, поэтому подходит для частного или многоквартирного дома. Учет и передача данных производится на ЖК-монитор, через разъемный интерфейс, на ноутбук или компьютер при помощи сетевого кабеля, через GSM-сеть.
Сценарий, по которому нужно измерить показания, задает пользователь. Ультразвуковые приборы могут подключаться к системе водо-, газоснабжения, являются частью АСКУЭ или совмещаются с системой «умный дом».
Преимущества:
- множество вариантов для общедомовых и частных измерений;
- возможность интеграции в несколько учетных систем;
- прочность за счет отсутствия подвижных узлов;
- красивый внешний вид и компактность;
- защита от пыли и влаги – счетчик можно поставить на кухне или на улице;
- прочный корпус;
- функции самодиагностики неполадок;
- обширная коммуникация;
- выполнение со съемным вычислительным блоком или без него;
- период между проверками – 6 лет, между заменами – 10 лет.
Минусы:
- высокая стоимость;
- коммуникационные возможности зависят от специфики выхода;
- затраты на приобретение расходомеров, датчиков давления, модулей ДУ для приборов базовой комплектации.
Открытая и закрытая системы отопления
Кроме уже рассмотренных нами видов водяных отопительных систем имеется разделение на открытую и закрытую конструкцию.
Открытая система отопления состоит из котла (используется любой, кроме электрического), трубопроводов, радиаторов отопления и расширительного бачка, в который поступают излишки воды при её расширении в процессе нагревания.
Бачок не герметичен, вода из системы может испаряться, поэтому её уровень нужно контролировать и доливать при необходимости.
Для того чтобы открытая отопительная система с верхней разводкой и естественной циркуляцией теплоносителя работала эффективней в зимний период подающий стояк рекомендовано утеплять. Эта мера исключит остывание теплоносителя и, как следствие, замедление его движения (+)
Насос в открытой отопительной системе не применяется. Нагревательный котел располагается в её самой нижней точке, а расширительный бачок – в её верхней точке.
Закрытая конструкция герметична. В неё входят все те же элементы, что и в открытую. Но поскольку перемещение теплоносителя в ней происходит принудительно, обязательный список элементов дополнен циркуляционным насосом.
Расширительный бачок, входящий в состав закрытой конструкции, состоит из двух завальцованных частей, разделенных между собой диафрагмой. При возникновении излишка расширившейся жидкости в системе, она поступает в одну из камер бачка, продавливая диафрагму во вторую камеру, заполненную азотом или воздухом.
При расширении теплоносителя давление в системе повышается, часть бачка, наполненная водой, стремиться вытеснить и сжать газовую смесь. При превышении предельного значения давления в бачке срабатывает предохранительный клапан, сбрасывающий излишки теплоносителя.
Закрытая система отопления характеризуется принудительным перемещением теплоносителя и присутствием закрытого расширительного бачка с мембраной; эта система более сложная, чем открытая
Каждая из отопительных систем обладает собственными преимуществами и недостатками. Они отличаются рядом характеристик и подходят для различных объектов. Если нужно отопить небольшой частный домик или дачу, используют простую и надежную открытую конструкцию.
Более сложная в монтаже и эксплуатации закрытая система отопления чаще применяется в солидных коттеджах и в многоэтажных строениях.
Пример расчета тепловых нагрузок объекта коммерческого назначения
Это помещение на первом этаже 4-х этажного здания. Месторасположение — г. Москва.
Исходные данные по объекту
Адрес объекта | г. Москва |
Этажность здания | 4 этажа |
Этаж на котором расположены обследуемые помещения | первый |
Площадь обследуемых помещений | 112,9 кв.м. |
Высота этажа | 3,0 м |
Система отопления | Однотрубная |
Температурный график | 95-70 град. С |
Расчетный температурный график для этажа на котором находится помещение | 75-70 град. С |
Тип розлива | Верхний |
Расчетная температура внутреннего воздуха | + 20 град С |
Отопительные радиаторы, тип, количество | Радиаторы чугунные М-140-АО – 6 шт. Радиатор биметаллический Global (Глобал) – 1 шт. |
Диаметр труб системы отопления | Ду-25 мм |
Длина подающего трубопровода системы отопления | L = 28,0 м. |
ГВС | отсутствует |
Вентиляция | отсутствует |
Тепловая нагрузка по договору (час/год) | 0,02/47,67 Гкал |
Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.
Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.
Итоговый максимальный расход — 0,008958 Гкал/час или 23 Гкал/год.
В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.
Общие принципы вычислений
Как рассчитывается тепловая энергия, установлено ПП № 354. Вычислениями занимаются коммунальные предприятия, но их разрешено производить и самим жильцам. Определить потребление тепла можно после подсчета количества тепловой энергии, затрачиваемой на отопление за год. Данный период позволяет получить усредненный норматив, поскольку летом затраты меньше, а зимой – больше. Оплата согласно нормативу предусматривает равные затраты за отопительный период или календарный год.
Схема вычислений зависит от нескольких факторов:
- оснащения дома измерителем тепловой энергии;
- возможность учета обогрева всех комнат индивидуальными приборами;
- календарное время внесения оплаты – зима или весь год.
Рассчитать для многоквартирного дома тепловую энергию сложнее, чем для частного. Это связано с наличием общих мест, жилых и нежилых помещений, правом собственности
Приняв во внимание зависимость теплоэнергии от габаритов комнаты, стоит руководствовать ПП № 354 и ПП № 306. В них отмечено распределение объема тепла, используемого домом в пропорциональной зависимости от площади квартир
Показания общего счетчика делятся на долевое соотношение жилья собственников.
Гигакалория
В качестве единиц количества теплоты в технике приняты джоуль ( дж), международная калория ( кал) и кратные единицы: килокалория ( ккал), мегакалория ( Мкал), гигакалория ( Гкал): 1 кал 4 1868 дж ( точно) 4 19 дж; 1 ккал 1000 кал 4 19 кдж; 1 Мкал 1000 ккал 1 000 000 кал 4 19 Мдж; 1 Гкал 1000 Мкал 1 000 000 ккал 1 000 000 000 кал 4 19 Гдж.
Важнейшим показателем, характеризующим котельную в системе теплоснабжения потребителей, является ее тепловая мощность ( производительность) — суммарная максимальная мощность по всем видам теплоносителей, отпускаемая котельной потребителям, выраженная в гигакалориях в час.
Удельная прочность, удель — килограмм-сила-сантиметр на грамм квадратный метр на килограмм-силу квадратный сантиметр на килограмм-силу килограмм-сила-секунда на квадратный метр килограмм на секунду-метр килограмм-сила на метр килограмм-сила-метр на квадратный сантиметр килограмм-сила-сантиметр на квадратный сантиметр дарси килограмм в час на метр-миллиметр водяного столба килограмм в час на метр-0 1 атмосферы грамм в час на метр-миллиметр ртутного столба кубический метр в час на метр — миллиметр водяного столба теракалория гигакалория мегакалория килокалория калория калория термохимическая калория на грамм килокалория на килограмм калория на грамм-градус Цельсия килокалория на килограмм-градус Цельсия калория на грамм-кельвин килокалория на килограмм-кельвин килограмм-сила-метр на килограмм-градус Цельсия калория в секунду килокалория в час мегакалория в час килокалория в час на квадратный метр мегакалория в час на квадратный метр килокалория в час на кубический метр мегакалория в час на кубический метр килокалория в час на квадратный метр-градус Цельсия калория в секунду на квадратный сантиметр-градус Цельсия килокалория в час на метр-градус Цельсия калория в секунду на сантиметр-градус Цельсия ом-квадратный миллиметр на метр кюри кюри на килограмм кюри на грамм кюри на кубический метр кюри на литр кюри на миллилитр кюри на квадратный метр кюри на квадратный сантиметр рад кгс см / г М2 / КГС СМ2 / КГС кгс с / м2 кг / ( с-м) кгс / м кгс м / см2 кгс см / см2 д КГ / ( Ч — М — ММ ВОД.
В тех случаях, когда не требуется большой точности, значения даны округленно. То же относится к гигакалории, поскольку пиковые водогрейные котлы имеют маркировку в этой единице в части теплопроизво-дительности.
Количество теплоты выражается в гигаджоулях или гигакалориях. Последнюю единицу продолжают широко использовать благодаря простоте перехода к этой единице от единицы массы и температуры.
Таким образом, стоимость транспорта тепла складывается из ряда статей расходов, связанных с эксплуатацией теплопроводов и насосных подстанций, она колеблется в зависимости от местных условий. Так, например, в Московской теплосети стоимость транспорта одной гигакалории составляет 18 коп.
Что такое Гкал
Стоимость отопления важна для жителей многоэтажек с центральной подачей теплоносителя
Понятие гигакалория означает единицу измерения тепловой энергии в отоплении. Данная энергия в пределах помещения передается конвекционным способом от батарей на объекты, излучается в воздух. Калория представляет собой количество энергии, нужной, чтобы подогреть 1 г воды на 1 градус при атмосферном давлении.
Для расчетов тепловой энергии применяется другая единица – Гкал, равная 1 млрд калорий. В среднем расход тепла на 1 кв. м. в Гкал по РФ составляет 0,9342 Гкал/мес. Если перевести показатель в другие величины, 1 Гкал будет равна:
- 1162,2 кВт/ч,
- нагреву 1 тыс. тонн воды до +1 градуса.
Величина утверждена в 1995 году.
Особенности Гкал для жилых многоэтажек
Термостат позволяет контролировать поступление теплоносителя и температуру
Если многоквартирный тип зданий не оснащен общедомовым или индивидуальным счетчиком, тепловая энергия рассчитывается по площади помещений. Когда имеется прибор учета, горизонтальная или последовательная разводка трассы, жильцы самостоятельно определяют количество тепловой энергии. Для этого используются:
- Дросселирование радиаторов. При ограничении проходимости снижается температура, и уменьшаются энергозатраты.
- На обратке ставится общий термостат. Расход теплоносителя зависит от температуры в квартире. При малом расходе температура больше, при большом – меньше.
Индивидуальным счетчиком преимущественно оснащается квартира в новостройке.
Специфика Гкал для частного дома
Самым дешевым топливом в пересчете на гигакалории являются пеллеты
Материал, затрачиваемый на отопление, тариф определяет для частных построек. По усредненным данным, стоимость 1 Гкал равняется:
- газ – природный 3,3 тыс. руб, сжиженный 520 руб.,
- твердое топливо – уголь 550 руб., пеллеты 1,8 тыс. руб.,
- дизель – 3270 руб.,
- электричество – 4,3 тыс. руб.
Считаем показатели количества теплоносителя: теория и практика
В индивидуальных жилых строениях или многоквартирных домах обычно используется:
- техническая вода;
- пропиленгликоль;
- этиленовый раствор.
Важно, чтобы любой теплоноситель соответствовал требованиям, предусмотренным в нормативных документах. В российских стандартных есть 5 условий, подлежащих соблюдению:
- оптимальное значение перемещения теплоносителя;
- невысокая вязкость с одновременным обеспечением проточности как у обычной воды;
- небольшая расширяемость во время остывания системы;
- исключение токсичности;
- недорогая цена.
Расчет показателей отопительной системы нельзя считать простыми, нужен опыт.
Схема отопительной системы домаИсточник odstroy.ru
Для грамотного определения показателей с помощью расчетных формул для дальнейшего использования надежного носителя тепла рекомендуется пользоваться услугами специалиста, занимающегося проектированием индивидуальных схем отопления или грамотного сантехника.
Итоги всех подсчетов
В утепленном доме количество израсходованных гигакалорий будет меньше
При правильном использовании формулы расчета можно узнать количество израсходованных Гкал тепловой энергии. Информация поможет спланировать бюджет, уточнить итоговую сумму к оплате. На основании указанных выше формул можно сделать вывод о затратах гигакалорий на строение до 200 квадратов. Эта величина равна 3 Гкал в месяц. С учетом длительности отопительного сезона в большинстве областей РФ в 6 месяцев, легко определить примерный тепловой расход. Понадобится умножить 3 Гкал на 6 месяцев. Результат – 18 Гкал.
Затраты гигакалорий проще высчитать для частного дома по показателям индивидуального измерителя. Расчетный процесс для квартир осложняется наличием домового и личного счетчика. Однако, такая процедура реализуется самостоятельно без посещений специальных организаций.
Для расчета тепловой энергии применяются специальные математические формулы. В них подставляются максимально точные данные, а о самостоятельном подсчете информируются энергопровайдеры. При вычислениях можно применять онлайн-калькуляторы или обратиться к специалистам, которые произведут все операции, ориентируясь на показатели вашего помещения и тип счетчика.