Защита от обгорания или обрыва нуля
Итак, обрыв и отгорание нейтрального проводника является очень опасным и довольно частым происшествием. Есть ли необходимость в защите электросети от этого негативного явления? Конечно же, есть! Защита от отгорания «нуля» в трехфазной сети позволит вам сохранить свою дорогостоящую бытовую технику в рабочем состоянии. Защита от обрыва «нуля» в однофазной сети обеспечит вашу личную безопасность. Все эти виды обеспечения безопасности человека и бытовых электроприборов от последствий, возникающих при обрыве нейтрального проводника, выполняются с использованием специального оборудования и приемов электромонтажа, которые мы рассмотрим ниже.
- Реле максимального и минимального напряжения. Это основное устройство, которое следует использовать для защиты электросетей от обгорания или обрыва нулевого проводника. Применяется на всех типах недвижности. Промышленность изготавливает модели реле напряжения как для однофазных, так и трехфазных сетей. Принцип действия устройства заключается в разрыве цени электроснабжения при отклонении величины напряжения в сети сверх установленных значений.
- УЗИП — ограничитель перенапряжения. Это устройство для защиты и отключения оборудования при перенапряжении в электропроводке, возникающего вследствие обрыва или отгорания «нуля», удара молнии и по некоторым другим причинам. В основном используется в частных домовладениях. Принцип работы устройства заключен в увеличении собственного внутреннего сопротивления электротоку при больших перепадах напряжения.
- Устройство защитного отключения (УЗО). Такой модуль, имеющий сокращенное название УЗО, способен создать эффективную защиту для человека от удара электрическим током при обрыве нейтрального проводника в однофазных линиях. УЗО мгновенно обесточит сеть при попадании фазы на нулевой провод в том случае, если заземление бытовых приборов выполнено с нарушением ПУЭ (правил устройства электроустановок).
- Дифференциальный автомат с расширенными функциями. Дифавтомат — это защитное модульное устройство, позволяющее одновременно отключать фазу и нейтральный провод при возникновении любых аварийных ситуаций. Этот модуль совмещает в своей конструкции автоматический выключатель при КЗ (коротком замыкании) в нагрузке и защитное устройство (УЗО). При обгорании «нуля» в магистральных сетях с тремя фазами и обрыве нулевого провода в однофазных линиях он способен защитить электрические приборы и другую технику от выхода из строя, а человека от удара электротоком.
- Многократное повторное заземление. Этот технологический прием способен защитить бытовые приборы и человека от последствий обрыва и обгорания «нуля», но он сложен в исполнении, решает ограниченный спектр задач и применяют его в основном специалисты энергоснабжающих организаций на магистральных линиях электропередач.
Особенности поиска и локализации места неисправности
Используемая измерительная техника и пробники
Электропроводка не имеет движущихся элементов. Поэтому наиболее достоверные данные о ее состоянии могут быть получены только приборными методами.
Контроль сети и поиск места неисправности осуществляют отверткой-индикатором и тестером. Отвертка позволяет отличить фазный провод от провода с нулевым потенциалом и проверить наличие линейного напряжения на фазном проводе. При касании жалом исправного фазного провода при условии того, что один из пальцев лежит на контакте рукоятки, загорается оранжевая неоновая лампочка, рисунок 4. Для контроля напряжения касание производят в любой удобной точке, например, на контактах выключателя.
Рис. 4. Проверка фазы индикаторной отверткой
Тестер позволяет определить фактическую величину сетевого напряжения. Для измерения щупами одновременно касаются оголенных частей фазного и нулевого провода. Показания при измерениях фазных напряжений должны составлять 220 В или же отличаться от него не более чем на 5 — 10 В.
Приемы поиска места обрыва
Восстановление нормального функционирования электропроводки начинается с локализации места неисправности и выявление ее причины. Для трехфазной и однофазной сети процедуры одинаковы. Их осуществляют методом исключения заведомо исправных частей контролем наличия фазы. Затем производят разбиение потенциально неисправной области сети на более мелкие части, каждую из которых проверяют отдельно.
Большую помощь на первом этапе поиска оказывает то, что так называемые верхний (на люстры и прочие потолочные устройства освещения) и нижний (розетки) квартирные вводы проводки выполняют от разных фаз. Поэтому неработающий верхний свет при функционирующем телевизоре сразу же свидетельствует об исправности фазы для организации нижнего ввода.
При проверках используют индикаторную отвертку и тестер
При контроле верхнего света для доступа к контактам следует вывернуть лампочку и соблюдать определенную осторожность. В данном случае велики риски короткого замыкания контактов патрона жалом отвертки или наконечниками проводов тестера
Локализация места неисправности
Основное средство локализации места обрыва цепи — последовательный контроль ее компонентов. Учитывается, что цепь протекания электрического тока всегда содержит 2 провода.
При шлейфовом соединении проверки начинают от самого дальнего из них и производят по направлению к распаечной коробке. Для случаев прямого подключения потребителя к проводке без шлейфа можно сразу переходить к контролю распаечной коробки с проверкой фазных и нулевых проводников.
При проверке фазных проводов широко используют визуальный осмотр отдельных компонентов цепи. Неисправность часто проявляется в виде копоти и следов оплавления пластикового корпуса или полимерной изоляции, рисунок 5.
Рис. 5. Внутреннее повреждение выключателя
Для выявления пропадания нуля, например, в розетке, при исправной фазе достаточно подключить лампочку, которая не будет светиться.
Обрыв нуля, отгорание нуля – последствия!
Рейтинг: 5 / 510Обрыв нуля, отгорание нуля – последствия!
«Все, что нас не убивает, делает нас сильнее». Спорное утверждение.
Его точно нельзя отнести к электричеству, потому что воздействие тока на человеческий организм зависит от огромного количества факторов начиная с температуры тела и заканчивая наличием болезней.
Разумеется, никто не застрахован от попадания под напряжение. Зато легко можно уменьшить вероятность такого происшествия. В этой статье расскажем подробно про обрыв или отгорание нуля, последствия этого, и меры защиты.
Как известно, наибольшее распространение получили три схемы питания электроприемников: треугольник, звезда и звезда с нулем. Первые две применяются преимущественно там, где нагрузка распределена равномерно по трем фазам.
Совет
Например, по таким схемам соединяются обмотки электродвигателей или трансформаторов. В жилых и общественных зданиях использую схему соединения «звезда с нулем» – обычная звезда с нулевым проводом.
Чем обусловлено ее применение?
Дело в том, что в жилом и общественном секторе нагрузка однофазная: одна квартира (этаж или частный дом) питается от одной фазы, следующая – от второй, еще одна – от третьей, далее – по второму кругу. Так как в вводной щит подходит три фазы напряжения, количество квартир в доме или подъезде кратно трем.
Этим пытаются добиться равномерной загрузки трех фаз. Однако нельзя достичь того, чтобы все квартиры включали и выключали электроприборы в одно и то же время. Чтобы сохранить симметричной трехлучевую звезду напряжений (слева), применяют нулевой проводник.
Неравномерность электрических нагрузок в виде электрического тока буквально стекает в землю по нулевому проводу (ток на рисунке).
Фото 1: графики эл. нагрузок в виде эл. тока
Сейчас квартиры и офисы наполнены бытовой электроникой – компьютерами, источниками бесперебойного питания, светодиодными лампами. Эти приборы создают токи большой частоты, которые тоже стекают в землю по нулевому проводу.
Токи нагревают место плохого контакта – а там наибольшее сопротивление. От нагрева сопротивление растет еще больше, это, в свою очередь, приводит в большему нагреву, в итоге нулевой провод может отгореть.
Рассмотрим этот вполне реальный случай; те же рассуждения будут при обрыве нулевого провода по каким-то другим причинам.
Фото 2: обгоревший нуль
Отгореть провод может в разных местах, которые можно свести к двум случаям:
1) обрыв общий: в трехфазном этажном щитке или вводном щите;
2) обрыв индивидуальный: в автомате, защищающем квартиру, или распределительной коробке, или розетке.
Во втором случае возможны два варианта: или в квартире/розетке просто пропадет напряжение, или напряжение 220-230 В будет даже там, где его совсем не ждут.
Может сложиться интересная картина: электроприборы работать не будут, и мультиметр покажет, что в розетке нет напряжения. На самом же деле напряжение будет и на фазе, и на нуле.
Напряжение с фазы на ноль может передаться через электрическую цепь какой-нибудь нагрузки, соединяющей фазу и ноль, будь то лампочка или зарядное устройство.
Обратите внимание
И если схема защитного заземления в квартире собрана неправильно, на корпусе микроволновки или стиральной машинки может появиться напряжение в 220 В. Опять же обычный автоматический выключатель этого не заметит. Защита техники от последствий обрыва достигается установкой в щитке реле контроля напряжения.
Фото 3: вольтметры
Перейдем от слов к цифрам. Обозначим напряжение в месте обрыва (или присоединения) нулевого провода как , – сопротивление фазы X или нулевого провода N. – ток в фазе X или нулевом проводе N. Все эти величины комплексные, т.е.
в расчетах надо учитывать сдвиг фаз в 120°.
Расчеты токов и напряжений в нормальном режиме (вместо подставляем сопротивление нулевого провода) и при обрыве нуля ( ) проводят в таком порядке: ищут напряжение в нулевой точке, вычисляют «искаженное» фазное напряжение и ток в фазе .
В нормальном режиме ток в «нуле» равен суме комплексных фазных токов.
Социальные кнопки для Joomla
Как защититься?
Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:
- Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
- Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
- Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.
В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.
Последствия обрыва нуля в трехфазной сети
Расскажу случаи из жизни.
- Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
- Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.
Болт нуля. Ржавый, периодически не контачит!!! Если его менять без отключения, 100% в подъезде погорит техника!
Статья, как я менял там электрощиток – тут.
- Меня вызывали в рекламно-издательскую фирму. По предварительным оценкам, ущерб более 100 тыс.руб., а всё из-за плохого контакта на нулевой шине:
Отгорание нуля от нулевой шины
Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).
Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…
Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.
В этой статье подробно расскажу, почему такое бывает и как с этим бороться.
К чему приводит обрыв нулевого провода, какие виды обрыва бывают?
Если нулевой проводник выступает в роли защиты, почему же его обрыв опасен? Для ответа на этот вопрос рассмотрим ситуацию обрыва в трёхфазной и однофазной сетях.
Обрыв нуля в трехфазной сети
Трёхфазная сеть построена таким образом, что электрический ток идёт по рабочему проводнику к потребителю и уходит в нейтраль. Напряжение в нормальной ситуации между ними 220 В. В случае, когда ноль отключен, потребители будут подключены по схеме «звезда без нулевой магистрали». Это значит, что каждый потребитель получит не фазное стабильное напряжение в 220 В, а «гуляющее» от 0 до 380 В линейное. Это происходит из-за перекоса фаз, т.е. неравномерной нагрузки на разных фазах.
Как пример, возьмём три квартиры, которые подключены к разным фазам. Жильцы первой квартиры находятся дома и используют стиральную машину, электрическую печь и другие электроприборы. Во второй квартире никто не живёт, поэтому все приборы отключены от сети. В третьей же все ушли на работу, оставив в режиме ожидания некоторую технику. В случае обрыва нуля, в квартире № 1 техника прекратит работу или будет работать со сбоями, т.к. напряжение просядет до 50. 100 В, а в квартире № 3 подключенные приборы получат 300. 350 В и выйдут из строя, возможен пожар. Квартира № 2 не пострадает, т.к. вся техника отключена.
Это случается потому, что при обрыве нейтрали (в ситуации с большим суммарным сопротивлением) получается большее напряжение, которое и провоцирует выход из строя техники.
Обрыв нуля в однофазной сети
В однофазной сети обрыв нейтрали опасен для человека. Это можно объяснить тем, что в розетке появляется опасный потенциал там, где был ноль. Особенно опасна эта ситуация в системах с заземлением TN-C, т.к. используется совмещенный нулевой и заземляющий проводник PEN. Поэтому при обрыве провода, на открытых неизолированных частях корпуса электроприборов появляется потенциал опасный для жизни человека.
Полностью застраховать себя от проблем, возникающих в процессе эксплуатации электрических сетей, никто не в состоянии. Даже если электрическая проводка в частном доме, квартире или на даче выполнена с соблюдением всех правил и норм, нейтральный проводник может оборваться или обгореть по независящим от вас причинам. Поэтому заранее позаботьтесь о защите своей бытовой техники и собственной жизни от последствий, которые могут возникнуть вследствие обрыва «нуля»!
УЗО или ДИФФ с защитой от обрыва нуля
Уважаемые форумчани подскажите Пожалуста. Меняю проводку в своей квартире. Возник вопрос как защитить себя от обрыва нулевого проводника? Говорят что есть такие УЗО или дифференциальные автоматы которые имеют защиту от обрыва нуля. Если есть такие то подскажите какой фирмы лучше установить и какая точная у них маркировка. Или может быть есть какой либо другой способ защиты?
Я брал себе в 2 квартиры вот это, только модель постарше: ” > . Работает весьма неплохо, порог кажется 185-255 В, время задержки 3 мин. Одну квартиру мне спасло, в районе много апаратуры погорело, а у нас – ниче, тьфу 3 раза.
Комбинированная схема с электронным модулем дифференциальной защиты, варистором класса D и встроенным выключателем серии ВА47-29 обеспечивает 5 видов защиты oт:
дифференциального тока (тока утечки); короткого замыкания; перегрузки; импульсных; повышенного напряжения (265±5 В).
Время срабатывания великовато – 0.5 сек, а в реале – кто знает.
имейте ввиду, что любые УЗО-диффы со встроенной защитой от перенапряжения не включаются автоматически, в отличие от реле. В вашем холодильнике продукты имеют шансы протухнуть в ваше отсутствие, а рыбки в аквариуме починут смертью храбрых.
Комбинированная схема с электронным модулем дифференциальной защиты, варистором класса D и встроенным выключателем серии ВА47-29 обеспечивает 5 видов защиты oт: дифференциального тока (тока утечки); короткого замыкания; перегрузки; импульсных; повышенного напряжения (265±5 В).
Скажите а есть ли что то подобное у других фирм производителей таких как АВВ, Legrand, Schneider Electric и тгд.
не думаю что эти фирмы опустятся до такого уровня.
Я имею введу что существует ли у других фирм производителей УЗО или дифференциальный автомат именно С ЗАЩИТОЙ ОТ ОБРЫВА НУЛЯ. Или эту проблему они решают с помощью других каких либо устройств, если да то каких именно ?
Просто нормально обслуживают сеть.
Скорее, у них рынка просто нет на такие устройства
У большинства фирм есть реле контроля напряжения, асимметрии фаз.
Во-первых, не от 5, а от 3х. 2 последних – вычеркиваем. Во-вторых, при обрыве нуля АД не спасает и от первых 3х, поскольку его электроника перестает работать. В данном случае, как мне видится, нужно реле напряжения+ ДИФ. Не электронный.
Извиняюсь, неправильно сформулировал. Первые 2 защиты будут работать, поскольку они зависят от ВА-47, который полностью механический, 3-я нет, поскольку эта защита возложена на электронный блок.
Извиняюсь, неправильно сформулировал. Первые 2 защиты будут работать, поскольку они зависят от ВА-47, который полностью механический, 3-я нет, поскольку эта защита возложена на электронный блок.
Не совсем уверен в праильности сказанного: При обрвые нуля перестанет работать УЗО – это факт. Но. Варистор работать не перестанет. Более того – он то как раз и сработает (при превышении 265В), сбросив свое сопротивление к нулю (его Uc=265В). Через него – ток КЗ и. электромеханика автомата. Все работает
конечно не перестает. Его там просто нет. Не увидел его в описании. Тем более, никто, даже шизанутый ИЭК, не будет ставить одноразовую защиту в свои устройства. Еще одним косвенным признаком этого служит отсутствие графиков, иллюстрирующих скорость срабатывания ДИФа при превышении пороговых напряжений. Лежит у меня один 12, разбирать не хочу. Да мне и не нужно, поскольку в инструкции, приложенной к нему, этот вид защиты (защита о перенапряжения) не упомянут.
Шо за квиточек, Вам додалы? Она (защита) там- есть! Подайте на него напряжение и увидите. Но, этот параметр – не сертифицирован. И напряжения отключения плавает прилично. Т.е., де факто- есть, де юре – нет! Смысл – зачем платить больше? 2ТС не подходит ИЭК (по религиозным соображениям?) , ставьте -реле напряжения + контактор. Ссылка- во втором посту темы.
Есть такое устройство, вот: ” >
Вы не думайте, в своем посте:
я не собственные соображения наприсал, а скопировал с сайта ИЭК . И защита эта – не одноразовая, посокольку варистор класса D замечательно себя чувствует под током 5 кА в течение, как минимум, 28 мкс, после чего эм расцепитель АВ должен его освободить от этой посильной ноши.
И почему ИЭК “шизанутый” (сумашедший, как я понимаю ) – что ОНИ Вам плохого сделали? Обидели чем-то?
{SOURCE}
Функция рабочего ноля
В процессе изучения электричества ученые поняли, что земля (грунт, геологические породы и вся планета целиком) является неплохим проводником электрического тока. В принципе, для энергоснабжения было бы достаточного одного провода с электрическим потенциалом, а грунт бы выполнял функцию обратного участка цепи.
Кривая зависимости удельного сопротивления грунта от влажности
Но прогресс не пошел по этому направлению из-за необходимости создания систем заземления с большой контактной площадью, и при этом имеющих нестабильные характеристики и требующие постоянного обслуживания и защиты от влияния среды и электролитических процессов.
Поэтому дешевле и надежнее было провести два проводника, чтобы создать замкнутую цепь. Было решено один из проводов электрически соединить с землей, то есть, потенциал на данном проводнике относительно грунта равняется нолю. Данное решение было принято в целях электробезопасности ради зануления корпусов электрооборудования.
Схематическое отображение заземления и зануления
В наше время, функции защиты (зануления) выполняет защитный заземляющий проводник PE, а провод ноля используется только для протекания рабочего тока цепи. Термин «фазный провод» не имел бы смысла в однофазной сети, но, поскольку синусоидальное напряжение смещено по фазе относительно аналогичного параметра у других проводников электросети, данное название принято в обиходе.
В системах электроснабжения бытовых потребителей рабочий нулевой проводник всегда имеет контакт с землей (исключение: изолированная нейтраль). В цикле статьей о заземлении подробно описаны принципы разделения совмещенного нулевого провода на рабочий и защитный ноль в различных системах. Это означает, что напряжение относительно земли на рабочем ноле в однофазных и трехфазных системах нулевое (безопасное для людей и оборудования).
Схематическое отображение энергоснабжения жилого дома по системе заземления TN-C-S
Аварийное отключение рабочего ноля
Электрики знают, что и на нуле небольшой потенциал все же есть, и он зависит от величины протекающего тока (I) и удаленности от точки заземления. Чтобы понять данный процесс, нужно вспомнить задачу из школьного курса физики о расчете напряжений (делитель U1, U2 ) в точке соединения двух последовательно включенных сопротивлений (R1, R2). В нашем случае это будут сопротивления кабеля фазы и подключенной нагрузки (R1,) и R2 участка нулевого провода до точки заземления.
Делитель напряжения, образующий ноль в розетке
Если сопротивление нагрузки (R1) многократно превышает аналогичный параметр (R2) участка рабочего ноля, то потенциал на контакте ноля в розетке будет ничтожно малым. При большой протяженности рабочего нуля до точки заземления, напряжение U2 гипотетически рассчитываем по школьной формуле из рисунка выше. Но, если происходит обрыв нулевого провода, то при включенном в домашнюю сеть электрооборудовании на любом контакте ноля каждой розетки будет фазное напряжение U1.
Казалось бы, при современных системах заземления, исключающим зануление, пропажа нуля, не несет никакой опасности, ведь корпусы оборудования надежно заземлены, а сами электроприборы перестанут работать из-за прекращения тока. В однофазной домашней электрической сети будет именно так, если ноль оторвался сразу при вводе в дом.
Влияние обрыва ноля на потребителей
Но, если случается обрыв нуля где-то на трехфазной линии, то на оставшейся цепи, от разрыва до дома формируется напряжение подключенной нагрузкой от других фаз соседних потребителей электроэнергии. Если бы ток нагрузки всех трех фаз был идентичен, то сформировавшийся потенциал на нулевом проводнике был бы близким к нолю.
В реальности, при аварийных ситуациях нагрузка на фазах неравномерная, что означает смещение напряжения на нулевом проводнике в сторону большего фазного тока. Соответственно, разница потенциалов между образовавшимся нулем и двумя другими фазами окажется значительно большей, чем обычное напряжение сети электропитания.
Поэтому обрыв нулевого провода для бытовых электроприборов означает провал напряжения при попадании на фазу с наибольшим количеством подключенных потребителей, или превышение потенциалов выше допустимых параметров электропитания, если не повезет оказаться на двух других фазах.